

1 ROOF FRAMING PLAN SCALE: 1/8" = 1'-0"

Ν ____

GENE	RAMING PLAN	DATE 12/28/20
	RAL NOTE	S
GENERAL N		
G2 CONTRACT	IN CONSIDERED THAT THE FOR SHALL FIELD VERIFY E NCY OCCURS BETWEEN E>	XISTING STRUCTUR
ALTERATIO	ERFORMING ALTERATION V	CONTACT STRUCTL
LEGEND:		
1	SECTION	NEV
	ELEVATION	EXIS OR ELE
<u>S0.00</u>	REFERENCE	(E) EXIS
	GENERAL VIEW REFERENCE	
	REVISION CLOUD AND NUMBER	
A. APPLICABLE	DING CRITERIA BUILDING CODES: TERNATIONAL BUILDING CC	
COMME II. ASCE 7-	RCIAL BUILDING CODE SPS 10 MINIMUM DESIGN LOAD	361-366
 RISK CATEGO DEAD LOADS COLLATERAL 	SELF WEIGHT OF THE ST	RUCTURE PLUS AN
I. MECHAN	NICAL DUCTS = 1.5 PSF ICAL = 2.0 PSF	
IV. SOLAR F D. LIVE LOADS	PANEL, MOUNTING HARDW	ARE AND BALLAST E
	VE LOADS NSTRUCTION = 20 PSF (RE DATA	DUCIBLE)
I. SNOW I	MPORTANCE FACTOR: $I_s = 1$ JRE FACTOR: $C_e = 1.0$ AL FACTOR: $C_t = 1.0$ D SNOW LOAD: $P_g = 30$ PSF	1.2
V. FLAT RC VI. DRIFTIN	OOF SNOW LOAD: Pf = 30 PS G, SLIDING AND UNBALANC	SF
. WIND LOAD E	ORDANCE WITH ASCE 7 DATA IPORTANCE FACTOR = 1.0	
II. WIND EX III. ULTIMAT IV. NOMINA	KPOSURE CATEGORY = B TE DESIGN WIND SPEED: Va L DESIGN WIND SPEED: Va	₅d = 93 MPH, 3 SECOI
G. EARTHQUAK	ABLE INTERNAL PRESSURE E DESIGN DATA © IMPORTANCE FACTOR = 1	
II. SEISMIC III. SITE CLA	DESIGN CATEGORY = C	
b. 1 SI V. DESIGN	ORT PERIOD, S _S = 0.084g ECOND PERIOD, S ₁ = 0.046g SPECTRAL RESPONSE AC	
	ORT PERIOD, $S_{ds} = 0.09g$ ECOND PERIOD, $S_{d1} = 0.073$	g
	NOTES	SCHEDULES.

RIGINAL REVISION REVISION DATE NUMBER DATE 2/28/2021	DC ENGINEERING Careful listening. Dynamic solutions. www.dcengineering.net Phone:(608)416-1041 Project:21COMD04
NEW CONSTRUCTION EXISTING CONSTRUCTION OR PROVIDED BY OTHERS ELEMENT BEYOND/ OPTIONAL EXISTING	DC ENGINEERING 8383 GREENWAY BLVD, SUITE 600 MIDDLETON, WI 53562 STRUCTURAL ENGINEERING JOE CHAPMAN jchapman@dcengineering.net
DED BY WISCONSIN IG AND OTHER STRUCTURES IS AN ASSUMED LAST BLOCK = 4 PSF	JOSEPH L JOSEPH L CHAPMAN E-44295 MADISON, WI WI 01/03/2022
ADS: SECOND GUST SECOND GUST C GC _{pi} = +/- 0.18	DATE
IS PROVIDED	
	CITY OF MADISON FIRE STATION NO. 2 ROOF FRAMING PLAN 421 Grand Canyon Drive Madison, WI 53719
	CITY OF M CITY OF M FIRE STATI SCATE: 3200 FIRE STATI Addison, W153719 Madison, W153719

8383 Greenway Blvd, Suite 600 Middleton, WI 53562 Voice 608-416-1041 Fax 208-288-2182 www.dcengineering.net

STRUCTURAL CALCULATIONS Fire Station 2 Solar Panel

Addition

Madison, WI

PREPARED FOR: City of Madison

> DCE JOB #: 21comd04

Sheet Index

Roof Analysis1	-7	l
•		

Solar Panel and Mounting Information......8-15

ROOF ANALYSIS

JOB	
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	

Project Summary

Adding (2) solar arrays to roof of existing structure. Mounting equipment does not require direct attachment to deck and is secured using ballast blocks. Additional load to deck and framing is 4 PSF.

<u>Fire Station 2 Existing Roof Analysis</u> Original Design Loads

Snow load Ground snow load = 30 PSF Roof snow load = 30 PSF per original plans Drift at each array: Height of each array = 1.1', no additional drift at each array

Dead load 3" Tectum + 1-1/4" urethane = 5.5 PSF + 1 PSF = 6.5 PSF EPDM membrane + roof ballast = 5.5 PSF MEP = 1.5 PSF DL = 13.5 PSF

Compare applied loads to allowable loads using H-series joist tables.

<u>Array 1 and 2:</u> 28H9 joist @ 5' O.C. Span = 49'

Max. allowable loads from H-series table Total load = 278 PLF Live load (for L/360 deflection) = 144 PLF No ceiling attached to H-joists, can use live load for L/240 deflection: (144 PLF)(1.5) = 216 PLF

Max. applied loads DL = 15.2 PLF + (17.5 PSF)(5 FT) = 102.7 PLF LL = (30 PSF)(5 FT) = 150 PLF

Total load = 150 PLF + 102.7 PLF = 252.7 PLF < 278 PLF OK Live load = 150 PLF < 216 PLF OK

28H10 and 28H11 acceptable by inspection.

W16x31 Beams: Longest span = 19.5' Roof tributary = 3.6'

Beams acceptable as shown.

Project Title: Engineer: Project ID: Project Descr:

File: Fire_Station2_Existing_Beams.ec6 **Steel Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 DC ENGINEERING Lic. # : KW-06015046 DESCRIPTION: EXISTING W16x31 **CODE REFERENCES** Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 **Material Properties** Analysis Method : Allowable Strength Design Fy : Steel Yield : 36.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 29,000.0 ksi E: Modulus : Major Axis Bending Bending Axis : D(0.063) Lr(0.072) S(0.108) W16x31 Span = 19.50 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

```
Beam self weight calculated and added to loading
```

Uniform Load : D = 0.01750, Lr = 0.020, S = 0.030 ksf, Tributary Width = 3.60 ft, (ROOF + ARRAYS)

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.099 : 1 M	Aximum Shear Stress Ratio =	0.031 : 1
Section used for this span	W16x31	Section used for this span	W16x31
Ma : Applied	9.601 k-ft	Va : Applied	1.970 k
Mn / Omega : Allowable	97.006 k-ft	Vn/Omega : Allowable	62.964 k
Load Combination	+D+S	Load Combination	+D+S
Location of maximum on span	9.750ft	Location of maximum on span	0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.032 in Ratio = 0.000 in Ratio = 0.061 in Ratio = 0.000 in Ratio =	= 0 <360 = 3855 >=240.	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stre	ss Ratios		S	ummary of M	oment Valu	les			Sumn	nary of Sh	ear Values
Segment Length	Span #	М	V	Mmax + M	/Imax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 19.50 ft	1	0.046	0.015	4.47		4.47	162.00	97.01	1.00	1.00	0.92	94.45	62.96
+D+Lr													
Dsgn. L = 19.50 ft	1	0.081	0.026	7.89		7.89	162.00	97.01	1.00	1.00	1.62	94.45	62.96
+D+S													
Dsgn. L = 19.50 ft	1	0.099	0.031	9.60		9.60	162.00	97.01	1.00	1.00	1.97	94.45	62.96
+D+0.750Lr													
Dsgn. L = 19.50 ft	1	0.073	0.023	7.03		7.03	162.00	97.01	1.00	1.00	1.44	94.45	62.96
+D+0.750S													
Dsgn. L = 19.50 ft	1	0.086	0.027	8.32		8.32	162.00	97.01	1.00	1.00	1.71	94.45	62.96
+0.60D													
Dsgn. L = 19.50 ft	1	0.028	0.009	2.68		2.68	162.00	97.01	1.00	1.00	0.55	94.45	62.96
Overall Maximu	im Deflee	ctions											
Load Combination		Span	Max. "-" Defl	Location in S	Span	Load Com	bination			Max	ĸ. "+" Defl	Locatio	n in Span
+D+S		1	0.0607	9.80	06						0.0000		0.000
Vertical Reaction	ons				Support r	notation : Far	left is #1			Values i	n KIPS		
Load Combination		Support 1	Support 2										
Overall MAXimum		1.970	1.970										
Overall MINimum		0.550	0.550										
D Only		0.917	0.917								Dec	10 2 of 1	F
+D+Lr		1.619	1.619								Pag	e 2 of 1	5
-D-L		1.017	1.017										

Project Title: Engineer: Project ID: Project Descr:

Steel Beam				File: Fire_Station2_Existing_Beams.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Lic. # : KW-06015046				DC ENGINEERING
DESCRIPTION: EXIST	TING W16x31			
Vertical Reactions			Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
+D+S	1.970	1.970		
+D+0.750Lr	1.443	1.443		
+D+0.750S	1.706	1.706		
+0.60D	0.550	0.550		
Lr Only	0.702	0.702		
S Only	1.053	1.053		

Existing Tectum Roof Deck Analysis: Maximum applied load = DL + SL = 17.5 PSF + 30 PSF = 47.5 PSF See below for deck capacity

LOCATION DEPENDENT

TECTUM® I ROOF DECK DESIGN LOAD DATA

System	Thickness ¹	Wt. (PFS) ¹		24"	30"	36"	38"	40"	42"	44"	48"	50"	52"	54"	60"	66"	72
Plank	2"	3.5	_	130	75	50	45	40	35								
	2-1/2"	4.5		150	120	80	70	60	50	45	35						
	3"	5.3		200	125	102	91	82	74	65	50	45	40	35			
Long Span Plank	2"	3.8		130	75	75	75	70	64	57	50	45	40	35			
	2-1/2"	4.7		150	120	120	120	114	103	93	77	70	65	60	50	35	
	3"	5.5		200	125	125	125	125	120	115	110	104	96	88	71	58	5

γeγ on requesy

For loads greater than 200 lbs., contact Armstrong TechLine. ¹ Thickness and weight are nominal.

STANDARD LOAD TABLE OPEN WEB STEEL JOISTS, H- SERIES

Adopted by the Steel Joist Institute and American Institute of Steel Construction Inc., October 1, 1974

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of H-Series Steel Joists. The weight of DEAD loads, including the joists, must be deducted to determine the LIVE load-carrying capacities of the joists. The load table may be used for parallel chord joists installed to a maximum slope of ½ inch per foot.

The figures shown in blue in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be

obtained by multiplying the figures in blue by 1.5. In no case shall the total load capacity of the joists be exceeded.**

Tests on steel joists designed in accordance with the Standard Specifications have demonstrated that the Standard Load Tables are applicable for concentrated top chord loadings (such as are developed in bulb-tee roof construction) when the sum of the equal concentrated top chord loadings does not exceed the allowable uniform loading for the joist type and span and the loads are placed at spacings not exceeding 33" along the top chord.

LOADS ABOVE THE COLORED LINES ARE GOVERNED BY SHEAR.

Joist Designation	8H3	10H3	10H4	12H3	12H4	12H5	12H6	1	14H3	14H4	14H5	14H6	14H7		16H4	16H5	16H6	16H7	16H
Nominal *Depth (in.)	8	10	10	12	12	12	12		14	14	14	14	14		16	16	16	16	16
Resist. Moment (inIbs.)	91,000	116,000	148,000	140,000	180,000	222,000	260,000	1	65,000	212,000	259,000	307,000	369,000		221,000	289,000	344,000	413,000	478,0
Max. End React. (lbs.)	2400	2500	2800	2800	3200	3600	3900		3200	3500	3800	4200	4600		3800	4300	4600	4900	520
†Approx. Wt. (lbs./ft.)	5.0	5.0	6.1	5.2	6.2	7.1	8.2		5.5	6.5	7.4	8.6	10.0		6.6	7.8	8.6	10.3	11.
Span in Feet 8	600																		
9	533																		
10	480 460	500	560																
11	436 345	455	509																
12	400 266	417	467	467	533	600	650												
13	359 209	385 337	431 417	431	492	554	600							_			de la		
14	310 167	357 270	400 334	400 393	457	514	557	1	457	500	543	600	657						
15	270 136	333 219	373 271	373 320	427 418	480	520		427	467	507	560	613						
16	232 112	302 181	350 223	350 264	400 345	450 404	488 480		400 366	438	475	525	575		475	538	575	613	65
17		268 151	329 186	323 220	376 287	424 337	459 400		376 305	412 398	447	494	541		447	506	541	576	61
18	· •	239 127	305 157	288 185	356 242	400 284	433 337		340 257	389 336	422 393	467	511		422 413	478	511	544	57
19		214 108	273 133	259 157	332 206	379 241	411 286		305 218	368 285	400 334	442 399	484 470		400 351	453 432	484	516	54
20		193 92	247 114	233 135	300 177	360 207	390 246		275 187	350 245	380 287	420 342	460 403		368 301	430 370	460 437	490	52
21		52		212 117	272 152	336 179	371 212		249 162	320 212	362 248	400 295	438 348		334 260	410 320	438 377	467 454	49
22				193 101	248 133	306 155	355 185		227 141	292 184	345 215	382 257	418 302		304 226	391 278	418 328	445 395	47
23				176 89	227 116	280 136	328 162		208 123	267 161	326 189	365 225	400 265		279 198	364 243	400 287	426 346	45 39
24	-	-		162 78	208 102	257	301 142		191 108	245 142	300 166	350 198	383 233		256 174	334 214	383 253	408 304	43
25									176 96	226 125	276 147	327 175	368 206		236 154	308 190	367 224	392 269	41 3
26									163 85	209 111	255 131	303 156	354 183		218 137	285 169	339 199	377 239	40
27									151 76	194 99	237 117	281 139	337 164		202 122	264 151	315 177	363 214	38
28									140 68	180 89	220 104	261 125	314 147	3	188 110	246 135	293 159	350 192	37
29	+ +														175 99	229 121	273 143	327 172	35 1
30		-													164 89	214 110	255 129	306 156	34 1
31															153 81	200 99	239 117	287 141	33
32	+					-									144 74	188 90	224	269 128	31

See page LT-48 for notes

For Joist Depths 18" to 22" inclusive

Joist Designation	18H5	18H6	18H7	18H8	18H9	18H10	18H11	20H5	20H6	20H7	20H8	20H9	20H10	20H11	22H6	22H7	22H8	22H9	22H10	22H11
Nominal *Depth (in.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22
Resist. Moment (inlbs.)	325,000	383,000	466,000	540,000	627,000	705,000	814,000	365,000	406,000	499,000	602,000	701,000	789,000	912,000	422,000	526,000	653,000	776,000	873,000	1,009,00
Max. End React. (lbs.)	4500	4800	5200	5400	5900	6600	7600	4800	51'00	5400	5600	6400	7000	7900	5400	5600	5800	6700	7200	8100
†Approx. Wt. (lbs./ft.)	8.0	9.2	10.4	11.6	12.6	14.0	15.8	8.4	9.6	10.7	12.2	13.2	14.6	16.4	9.7	10.7	12.0	13.8	15.2	16.9
Span in Feet 18	500	533	578	600																
19	474	505	547	568	621															
20	450	480	520	540	590			480	510	540	560	640								
21	429 409	457	495	514	562	629		457	486	514	533	610								
22	409 356	436 420	473	491	536	600		436	464	491	509	582	636		491	509	527	609		
23	391 312	417 368	452 441	470	513	574		417 380	443 434	470	487	557	609		470	487	504	583	626	
24	375 274	400 324	433 388	450 444	492 484	550 546	633 619	400 335	425 382	450	467	533	583		450 446	467	483	558	600	
25	347 243	384 286	416 343	432 393	472 428	528 483	608 548	384 296	408 338	432 411	448	512	560	632	432 395	448	464	536	576	648
26	321 216	369 255	400 305	415 349	454 380	508 429	585 487	360 263	392 300	415 365	431	492 476	538	608	415 351	431 426	446	515	554	623
27	297 193	350 227	385 272	400 312	437 340	489 383	563 435	334 235	371 268	400 326	415 392	474 425	519 480	585 545	386 313	415 380	430	496	533	600
28	276 173	326 204	371 244	386 280	421 305	471 344	543 390	310 211	345 240	386 292	400 352	457 381	500 431	564 488	359 281	400 341	414	479 468	514	579
29	258 155	304 184	359 220	372 252	407 274	455 309	524 351	289 190	322 216	372 263	386 317	441 343	483 388	545 440	335 253	386 307	400 379	462 421	497 473	559 539
30	241 140	284 166	345 199	360 227	393 248	440 280	507 317	270 171	301 195	360 238	373 286	427 310	467 350	527 397	313 228	373 277	387 343	447 381	480 428	540 487
31	225 127	266 150	323 180	348 206	381 224	426 253	490 287	253 155	282 177	346 215	361 259	413 281	452 317	510 360	293 207	361 251	374 311	432 345	465 387	523 441
32	212 116	249 137	303 164	338 187	369 204	413 230	475 261	238 141	264 161	325 196	350 236	400 255	438 288	494 327	275 188	342 228	363 282	419 314	450 352	506 401
33	199 106	234 125	285 149	327 171	358 186	400 210	461 238	223 129	249 147	305 178	339 215	388 233	424 263	479 298	258 172	322 208	352 257	406 286	436 321	491 366
34	187 96	221 114	269 136	311 156	347 170	388 192	447 218	210 118	234 134	288 163	329 196	376 213	412 240	465 273	243 157	303 190	341 235	394 261	424 294	476 335
35	177 88	208 104	254 125	294 143	337 156	377 176	434 200	199 108	221 123	272 150	320 180	366 195	400 220	451 250	230 144	286 175	331 216	383 240	411 269	463 307
36	167 81	197 96	240 115	278 132	323 143	363 162	419 183	188 99	209 113	257 137	310 166	356 179	389 203	439 230	217 132	271 160	322 198	372 220	400 247	450 282
37								178 91	198 104	243 127	293 152	341 165	378 187	427 212	206 122	256 148	314 183	362 203	389 228	438 260
38								169 84	187 96	230 117	278 141	324 153	364 172	416 195	195 112	243 136	301 169	353 187	379 210	426 240
39								160 78	178 89	219 108	264 130	307 141	346 159	400 181	185 104	231 126	286 156	340 173	369 195	415 222
40								152 72	169 82	208 100	251 121	292 131	329 148	380 168	176 96	219 117	272 145	323 161	360 180	405 205
41															167 89	209 109	259 134	308 149	346 167	395 191
42															159 83	199 101	247 125	293 139	330 156	381 177
43															152 78	190 94	235 116	280 129	315 145	364 165
44															145 72	181 88	225 109	267 121	301 136	347 154

*Indicates Nominal Depth of steel joists only.

†Approximate Weights per Linear Foot of steel joists only. Accessories and nailer strip not included.

*†See manufacturers' catalog for detailed information on specific joist types.

**Section 5.9 of the "Standard Specifications for Open Web Steel Joists, J- and H-Series" limits the design LIVE load deflection as follows:

FLOORS, 1/360 span. ROOFS, 1/360 of span where a plaster ceiling is attached or suspended; 1/240 of span for all other cases.

For Joist Depths 24" to 30" inclusive

loist Designation	24H6	24H7	24H8	24H9	24H10	24H11	26H8	26H9	26H10	26H11	28H8	28H9	28H10	28H11	30H8	30H9	30H10	30H11
Nominal *Depth	24	24	24	24	24	24	26	26	26	26	28	28	28	28	30	30	30	30
(in.) Resist. Moment	462,000	576,000	716,000	851,000	957,000	1,106,000	784,000	925,000	1,040,000	1,203,000	846,000	1,000,000	1,124,000	1,300,000	909,000	1,075,000	1,207,000	1,397,00
(inlbs.) Max. End React. (lbs.)	5600	5800	6000	7000	7500	8200	6700	7200	7600	8300	6700	7200	7700	8400	6800	7500	8100	8700
†Approx. Wt. (lbs./ft.)	10.3	11.5	12.7	14.0	15.5	17.5	12.8	14.8	16.2	17.9	13.5	15.2	16.8	18.3	14.2	15.4	17.3	18.8
Span in Feet 24	467	483	500	583	625													
25	448	464	480	560	600				- × -									
26	431	446	462	538	577	631	515	554	585	638								
27	415 375	430	444	519	556	607	496	533	563	615								
28	393 336	414 406	429	500	536	586	479	514	543	593	479	514	550	600				
29	366 303	400 365	414	483	517	566	462	497	524	572	462	497	531	579				
30	342 273	387 330	400	467 457	500	547	447	480	507	553	447	480	513	560	453	500	540	580
31	320 248	374 299	387 373	452 414	484 465	529	432 418	465	490	535	432	465	497	542	439	484	523	561
32	301 225	363 272	375 339	438 376	469 423	513 482	419 380	450 445	475	519	419	450	481	525	425	469	506	544
33	283 205	352 248	364 309	424 343	455 386	497 440	406 346	436 405	461 456	503	406 404	436	467	509	412	455	491	527
34	266 188	332 227	353 283	412 314	441 353	482 402	394 317	424 371	447 417	488 476	394 370	424	453	494	400	441	476	512
35	251 172	313 208	343 259	400 288	429 323	469 369	383 290	411 340	434 383	474 437	383 339	411 396	440	480	389	429	463	497
36	238 158	296 191	333 238	389 264	417 297	456 339	372 267	400 312	422 352	461 401	372 311	400 364	428 410	467	378 359	417	450	483
37	225 146	280 176	324 219	378 243	405 274	443 312	362 246	389 288	411 324	449 370	362 287	389 336	416 378	454 432	368 330	405 387	438 436	470
38	213 135	266 162	316 202	368 225	395 253	432 288	353 227	379 266	400 299	437 341	353 265	379 310	405 349	442 399	358 305	395 357	426 402	458
39	202 124	252 150	308 187	359 208	385 234	421 266	344 210	369 246	390 276	426 316	344 245	369 287	395 322	431 369	349 282	385 331	415 372	446 426
40	193 115	240 139	298 174	350 193	375 217	410 247	327 194	360 228	380 256	415 292	335 227	360 266	385 299	420 342	340 262	375 306	405 345	435 395
41	183 107	228 129	284 161	337 179	366 201	400 229	311 181	351 211	371 238	405 272	327 211	351 247	376 278	410 318	332 243	366 285	395 320	424 367
42	175 100	218 120	271 150	322 166	357 187	390 213	296 168	343 197	362 221	395 253	319 196	343 229	367 258	400 295	324 226	357 265	386 298	414 341
43	167 93	208 112	258 140	307 155	345 174	381 199	283 156	334 183	353 206	386 235	305 183	335 214	358 241	391 275	316 211	349 247	377 278	405 318
44	159 87	198 105	247 130	293 145	330 163	373 186	270 146	319 171	345 193	377 220	291 171	327 200	350 225	382 257	309 196	341 230	368 259	395 297
45	152 81	190 98	236 122	280 135	315 152	364 173	258 137	305 160	338 180	369 205	279 159	320 187	342 210	373 240	299 184	333 215	360 242	387 278
46	146 76	181 92	226 114	268 127	302 142	348 162	247 128	291 150	328 168	361 192	267 149	313 175	335 197	365 225	286 172	326 202	352 227	378 260
47	139 71	174 86	216 107	257 119	289 133	334 152	237 120	279 140	314 158	353 180	255 140	302 164	328 184	357 211	274 161	319 189	345 213	370 244
48	134 67	167 81	207 100	246 111	277 125	320 143	227 112	268 132	301 148	346 169	245 131	289 154	321 173	350 198	263 151	311 177	338 200	363 229
49	0/	01	100		125	145	218 106	257 124	289 139	334 159	235 124	278 144	312 163	343 186	252 142	298 167	331 188	355 215
50							209 100	247 117	277	321 150	226 116	267 136	300 153	336 175	242 134	287 157	322 177	348 202
- 51							201 94	237 110	267 124	308 141	217 110	256 128	288 144	329 165	233 126	276 148	309 166	341 191
52							193 88	228 104	256 117	297 133	209 103	247 121	277 136	321 156	224 119	265 139	298 157	335 180
53							00	104		100	201 98	237 114	267 128	309 147	216 112	255 132	286 148	328 170
54											193 92	229 108	257 121	297 139	208 106	246 125	276 140	319 161
55											186 87	220 102	248 115	287 132	200 101	237 118	266 133	308 152
56											180 83	213 97	239 109	276 125	193 95	229 112	257 126	297 144
57												57	100	120	187 90	221 106	248 119	287
58															180 86	213 101	239 113	277
59			81210								100	-11.			174 81	206 95	231 108	268 123
60															168 77	199 91	224 102	259 117

*Indicates Nominal Depth of steel joists only.

†Approximate Weights per Linear Foot of steel joists only. Accessories and nailer strip not included.

*†See manufacturers' catalog for detailed information on specific joist types.

**Section 5.9 of the "Standard Specifications for Open Web Steel Joists, J- and H-Series" limits the design LIVE load deflection as follows:

FLOORS, 1/360 span. ROOFS, 1/360 of span where a plaster ceiling is attached or suspended; 1/240 of span for all other cases.

SOLAR PANEL AND MOUNTING INFORMATION

U-BUILDER PROJECT REPORT

VERSION: 3.1.6

project title ROOFMOU	JNT RM10	PROJECT ID EF551222	скеатер Sept. 28, 2021, 1:46 p.m.
ADDRESS	M	Fire 2 Draft onona, WI 53713, USA	Designed by wmcmahon@cityofmadison.com ROOFMOUNT RM10
CITY, STATE		Madison, WI	Hanwha/Q-Cells 38 - Q-PEAK DUO L-G5.2 380
MODULE	Hanwha/Q-Cells Q-	PEAK DUO L-G5.2 380	824.50 ft ² 14.44 KW

BILL OF MATERIALS

LEGEND: Base System Part Accessory

PART NUMBER	PART TYPE	DESCRIPTION	QUANTITY	SUGGESTED QUANTITY	UNIT PRICE (USD)	TOTAL LIST PRICE (USD)
UserSuppl	iedBallast Block	Ballast Block	75	75	0.00	0.00
310710	Ballast Bay	RM Ballast Bay 10 Degree	59	59	42.63	2515.17
310760	RM Roof Pad	RM Roof Pad	118	118	2.23	263.14
310750	Module Clip	RM Module Clip	180	180	1.58	284.40
310751	RM Hex Bolt	RM Hex Bolt (Module Clip)	180	180	0.94	169.20

OTAL PRICE \$3231.91	TOTAL PR	\$263.14	ACCESSORIES PRICE	\$2968.77	BASE SYSTEM PRICE
\$0.224 PER WATT		0.018 PER WATT	\$	0.206 PER WATT	\$0

This design is to be evaluated to the product appropriate Unirac Code Compliant Installation Manual which references International Building Code 2009, 2012, 2015, 2018 and ASCE 7-05, ASCE 7-10, ASCE 7-16 and California Building Code 2010, 2016. The installation of products related to this design is subject to requirements in the above mentioned installation manual.

DETAILED PARTS DESCRIPTION

	Ballast Block UserSupplied Ballast Block Standard 4x8x16 inch cap blocks. Nationwide availability. Please confirm the weight of your ballast block as this will affect the total blocks required for your installation.	75
J.	Ballast Bay 310710 RM Ballast Bay 10 Degree Aluminum ballast bay attaches to north and south module edges (for 10 degree tilt installations) and provides ballast placement location.	59
	RM Roof Pad 310760 RM Roof Pad TPE 201-73 BK Santoprene Roof Pad. PLEASE NOTE: Depending on your roof type and seismic conditions, some quantity of roof pads may be required. These will be listed separately on your bill of materials.	118
	Module Clip 310750 RM Module Clip Aluminum clip fastens module frame to ballast bay and provides bonding path from module to bay to module.	180
T	RM Hex Bolt 310751 RM Hex Bolt (Module Clip) Hex bolt with integrated locking patch.	180

ENGINEERING REPORT

Plan review

AVERAGE PSF	3.84 psf
TOTAL NUMBER OF MODULES	38
TOTAL KW	14.44 KW
TOTAL MODULE AREA	~1349 ft ²
TOTAL WEIGHT ON ROOF	5180 lbs
RACKING WEIGHT	207 lbs
MODULE WEIGHT	1968 lbs
BALLAST WEIGHT	2888 lbs
MAX BAY LOAD (DEAD)	132 lbs

Loads Used for Design

BUILDING CODE	ASCE 7-10
BASIC WIND SPEED	115.00 mph
GROUND SNOW LOAD	30.00 psf
SEISMIC (SS)	0.08
ELEVATION	871.00 ft
WIND EXPOSURE	В
MRI	25
RISK CATEGORY	II
VELOCITY PRESSURE, QZ	15.4 psf
Loads Determined by Zip	53713
CITY, STATE	Madison, WI

CITY, STATE	Madison, WI
BASIC WIND SPEED	115.00 mph
GROUND SNOW LOAD	30.00 psf

Inspection

PRODUCT	ROOFMOUNT RM10
MODULE MANUFACTURER	Hanwha/Q-Cells
MODEL	Q-PEAK DUO L-G5.2 380
MODULE WATTS	380 watts
MODULE LENGTH	79.30"
MODULE WIDTH	39.40"
MODULE THICKNESS	1.38"
MODULE WEIGHT	51.80 lbs
BALLAST BLOCK (CMU) WEIGHT	38.5 lbs
MAX BLOCKS PER BAY	4
BUILDING HEIGHT	20.00 ft
ROOF TYPE	MINERAL_CAP
PARAPET HEIGHT	<= 1/2 Array Height (<= 6 inches)

Roof Area 1 - Array 1

AVERAGE PSF	3.91 psf
TOTAL NUMBER OF MODULES:	18
TOTAL KW:	6.84 KW
TOTAL AREA:	642 ft ²
TOTAL WEIGHT ON ROOF:	2511 lbs
RACKING WEIGHT:	98 lbs
MODULE WEIGHT:	932 lbs
BALLAST WEIGHT:	1425 lbs
ATTACHMENT COUNT	

MINIMUM SEISMIC SEPARATION (UNATTACHED ARRAYS) *

ARRAY TO ARRAY:	3.0"
TO FIXED OBJECT ON ROOF:	6.0"
TO ROOF EDGE WITH QUALIFYING PARAPET:	6.0"
TO ROOF EDGE WITHOUT QUALIFYING PARAPET:	9.0"
MAX ARRAY (SEISMIC) (FOR UNATTACHED ARRAYS) *	
MAX NUMBER OF NORTH-SOUTH ROWS:	26
MAX NUMBER OF EAST-WEST COLUMNS:	115

*In jurisdictions that follow SEAOC PV-1 methodology.

Roof Area 1 - Array 2

AVERAGE PSF	3.78 psf	
TOTAL NUMBER OF MODULES:	20	
TOTAL KW:	7.60 KW	
TOTAL AREA:	707 ft ²	
TOTAL WEIGHT ON ROOF:	2670 lbs	
RACKING WEIGHT:	109 lbs	
MODULE WEIGHT:	1036 lbs	
BALLAST WEIGHT:	1463 lbs	
ATTACHMENT COUNT		

MINIMUM SEISMIC SEPARATION (UNATTACHED ARRAYS) *	
ARRAY TO ARRAY:	3.0"
TO FIXED OBJECT ON ROOF:	6.0"
TO ROOF EDGE WITH QUALIFYING PARAPET:	6.0"
TO ROOF EDGE WITHOUT QUALIFYING PARAPET:	9.0"
MAX ARRAY (SEISMIC) (FOR UNATTACHED ARRAYS) *	
MAX NUMBER OF NORTH-SOUTH ROWS:	26
MAX NUMBER OF EAST-WEST COLUMNS:	115
*In jurisdictions that follow SEAOC PV-1 methodology.	

RM10 U-BUILDER PRODUCT ASSUMPTIONS

RM10 – Ballasted Flat Roof Systems

Limitations of Responsibility: It is the user's responsibility to ensure that inputs are correct for your specific project. Unirac is not the solar, electrical, or building engineer of record and is not responsible for the solar, electrical, or building design for this project.

Building Assumptions

- 1. Risk Category III
- 2. Building Height ≤ 50 ft
- 3. Building Height > 50 ft: only where (longest length of building x building height)^ $0.5 \le 100$ ft
- 4. Roof Slope $\ge 0^{\circ}$ (0:12) and $\le 3^{\circ}$ (5/8:12) for Seismic Design Category C, D, E and F. For low seismic regions Seismic Design Category A and B (provided Array Importance factor = 1.0), Roof Slope $\ge 0^{\circ}$ (0:12) and $\le 7^{\circ}$ (1 1/2:12).
- 5. Roofing Material Types: EDPM, PVC, TPO, or Mineral Cap
- 6. Surrounding Building Grade: Level

Ballast Blocks

The installer is responsible for procuring the ballast blocks (Concrete Masonry Units – CMU) and verifying the required minimum weight needed for this design. CMU should comply with ASM standard specification for concrete roof pavers designation (C1491 or C90 with an integral water repellant suitable for the climate it is placed. It is recommended that the blocks are inspected periodically for any signs of degradation. If degradation of the block is observed, the block should immediately be replaced.

The CMU ballast block should have nominal dimensions of 4"x8"x16". The actual block dimensions are 3/8" less than the nominal dimensions. Ballast blocks should have a weight as specified for the project in the "Inspection" section of this report.

Design Parameters

- 1. Risk Category I to III
- 2. Wind Design
 - a. Basic Wind Speed: 85-120 mph (ASCE 7-05)/110-150 mph (ASCE 7-10)/90-180 mph (ASCE 7-16)
 - b. Exposure: B, C or D (ASCE 7-05/ASCE 7-10)
 - c. 25 year Design Life/50 year Design Life for ASCE 7-16
 - d. Elevation: Insertion of the project at grade elevation can result in a reduction of wind pressure. If your project is in a special case study region or in an area where wind studies have been performed, please verify with your jurisdiction to ensure that elevation effects have not already been factored into the wind speed. If elevation effects have been included in your wind speed, please select 0 ft as the project site elevation.
 - e. Wind Tunnel Testing: Wind tunnel testing coefficients have been utilized for design of the system.
- 3. Snow Design
 - a. Ground Snow Load: 0-80 psf (ASCE 7-10/ASCE 7-16)
 - b. Exposure Factor: 0.9
 - c. Thermal Factor: 1.2
 - d. Roof Snow Load: Calculation per Section 7.3 (ASCE 7-05/ASCE 7-10/ASCE 7-16)
 - e. Unbalanced/Drifting/Sliding: Results are based on the uniform snow loading and do not consider unbalanced, drifting, and sliding conditions
- 4. Seismic Design
 - a. Report SEAOC PV1-2012/ASCE 7-16 SECTION 13.6.12 Structural Seismic Requirements and Commentary for Rooftop Solar Photovoltaic Arrays
 - b. Seismic Site Class: A, B, C, or D (ASCE 7-05/ASCE 7-10/ASCE 7-16)
 - c. Importance Factor Array (lp): 1.0
 - d. Importance Factor Building (le): 1.0
 - e. Site Class: D

Properties

- 1. Bay Weight: ~3.5 lbs
- 2. Module Gaps (E/W) = 0.25 in
- 3. Bays: North row bays overhang the module by ~19.5 inches.

Module Properties

- 1. Module return flange: Minimum of 0.9in (when using 1-3/4 in. clip bolts) is required.
- 2. Module return flange: Minimum of 0.65in (when using 2 in. clip bolts) is required.

Testing

- 1. Coefficient of Friction
- 2. Wind Tunnel
- 3. UL 2703
- 4. Component Testing (Bay and Clamp)

Setbacks

For the wind tunnel recommendations in U-Builder to apply, the following setbacks should be observed/followed for U-Builder wind design:

- 1. Modules should be placed a minimum of 3 feet from the edge of the building in any direction.
- If the array is located near an obstruction that is 3.5 feet wide and 3.5 feet high or larger, the nearest
 module of the array must be located a distance from the obstruction that is greater than or equal to the height of the obstruction.
 Exception: When using ASCE 7-16 Building Code and using the obstruction feature in the module editor to accurately model the size and
 location of obstruction.
- 3. Installations within the setbacks listed above require site specific engineering 2
- 4. The setbacks above are for wind. High seismic areas, fire access isles, mechanical equipment, etc., may require larger setbacks than listed above for wind.

Site Specific Engineering

Conditions listed below are beyond the current capabilities of U-Builder. Site specific engineering is required.

- 1. Wind designs for a project design life exceeding 25 years ^{1/ASCE 7-16}
- 2. Building assumptions and design parameters outside of U-Builder assumptions²
- 3. Attachments²
- 4. Risk Category III or IV projects (U-Builder can be adjusted for the correct wind, but not the seismic or snow design)²
- 5. Wind tunnel testing reduction factors are not permitted by the Authority Having Jurisdiction (AHJ)³
- 6. Seismic designs that fall outside SEAOC PV1-2012/ASCE 7-16 SECTION 13.6.12 recommendations (>3% roof slope, or AHJ's that require shake table testing or non-linear site-specific response history analysis)³
- 7. Signed and sealed site-specific calculations, layouts, and drawings³

Notes:

- ¹Please contact info@unirac.com.
- ² Please contact EngineeringServices@unirac.com for more information.
- ³Please contact Theresa Allen with PZSE Structural Engineers at theresa@pzse.com. These items

will require direct coordination with PZSE to complete the requested services.

INSTALLATION AND DESIGN PLAN

Roof Area 1 / Roof Area 1 - Array 1

LEGEND

Standard corner bay with CMU block count

Supplemental bay with CMU block count

NOTE

Blocks above with values greater than 4 require extra ballast bays, except north-most bays which require extra bays for values greater than 6. The proper number of bays are provided in the Bill of Materials. The installer must install these extra bays as near to the indicated location as possible.

Install roof pads to every bay.

Layout Dimensions

NS DIMENSION	~16.20 ft
EW DIMENSION	~ 39.78 ft

ROW	MODULES	BAYS	BALLAST BLOCKS (CMU)	BALLAST WEIGHT (LBS)
1	6	7	12	462
2	6	7	9	347
3	6	7	9	347
4	0	7	7	270

Roof Area 1 / Roof Area 1 - Array 2

LEGEND

Standard corner bay with CMU block count

Supplemental bay with CMU block count

NOTE

Blocks above with values greater than 4 require extra ballast bays, except north-most bays which require extra bays for values greater than 6. The proper number of bays are provided in the Bill of Materials. The installer must install these extra bays as near to the indicated location as possible.

Install roof pads to every bay.

Module

Layout Dimensions

NS DIMENSION	~ 21.06 ft
EW DIMENSION	~ 39.78 ft

ROW	MODULES	BAYS	BALLAST BLOCKS (CMU)	BALLAST WEIGHT (LBS)
1	4	5	8	308
2	4	5	5	193
3	6	7	9	347
4	6	7	9	347
5	0	7	7	270